Advances in optomap imaging highlight the importance of visualizing pathology in the retinal periphery in a variety of diseases.

- Optos systems (California, Daytona, Monaco and Silverstone) capture optomap images, all of which meet the recently defined ultra-widefield (UWF™) definition established by a consensus group of international retinal imaging experts.
- UWF is a single capture image that is centered on the fovea and contains anatomical features anterior to the vortex vein ampullae in all four quadrants, where the field of view is 110°-220°. Optos is currently the only UWF system commercially available on the market that fits this definition.
- The clinical utility of ultra-widefield imaging for diabetic retinopathy (DR), retinal vein occlusion (RVO), uveitis, and the pediatric retina, continues to improve our understanding, management, and treatment of these diseases by capturing peripheral changes in pathology.
- With the use of multimodal systems, such as the Optos, an array of capabilities including color imaging, autofluorescence (AF), fluorescein angiography (FA), indocyanine green angiography (ICG) and optical coherence tomography (OCT) are used to identify abnormalities which may have clinically significant implications.

“The ability to capture images of the peripheral retina with relative ease has provided insights into the importance of disease related peripheral pathology that was previously unknown.”

— Therapeutic Advances in Ophthalmology, 2020

See how optomap will help you manage your patients. For more information call 800-854-3039 or email BDS@optos.com.
Ultra-widefield retinal imaging: an update on recent advances

Patel, Shi, Wibbelsman, and Klufas
Therapeutic Advances in Ophthalmology, 2020

An update on recent advances within ultra-widefield (UWF™) retinal imaging with review of the current UWF imaging systems. The update reviewed the clinical utility of ultra-widefield imaging in diabetic retinopathy, peripheral pathology in DR, UWF imaging for telemedicine in DR, retinal vein occlusion, uveitis, and the pediatric retina. Other conditions and future directions in the field of UWF imaging were briefly reviewed.

- **optomap** images capture approximately 200° (82% - single capture) - 220° (97% - automontage) of the retina in an undilated eye (noncontact). Reduced peripheral distortion was noted as a limitation. However, Optos has corrected this in OptosAdvance ProView™ software using the Mercator projection. The accuracy of measurements in the periphery has been confirmed.

- Four additional commercially available widefield imaging systems were reviewed with the next largest single captures noted at 150° and 133°. However, these systems have limitations of contact required and reduced view of the retina respectively.

- Several studies have confirmed **optomap** as the largest single capture field of view.

- The bulk of UWF research and equivalence to gold standard imaging has been on Optos devices, demonstrating reliable clinical utility over the years. Other devices are too new to market to confidently know their reliability and clinical utility.

- In a study of 58 normal eyes, UWF-FA revealed a high presence of peripheral vascular variations in anatomy. Because of the wide range of normal anatomy in the periphery, our understanding of these findings continues to progress and may have clinical significance in the future.

References:
2. Widefield fluorescein angiography in patients without peripheral disease: a study of normal peripheral findings. Retina. 2016.
3. Assessment of Accuracy and Precision of Quantification of UWF Images. AJO. 2019.